Each question has 4 choices (1), (2), (3) and (4), out of which ONE OR MORE THAN ONE CHOICE IS CORRECT. For each correct answer 4 marks are awarded. No negative marks.

Use of calculators, slide rule, graph paper and logarithmic, trigonometric and statistical tables is not permitted.

- 1. In a circle of radius 2018 having centre at O, OPQR is a rectangle with Q on the circumference of the circle. P, R points inside the circle such that PQ = 504. Then PR = A) 2018 B) 504 C) 252 D) $\sqrt{1008}$
- 2. The cost of a jug and a glass is Rs.110. If the cost of the jug is Rs. 100 more than that of the glass then the cost of the glass in rupees is
 A) 10
 B) 8
 C) 9
 D) 5
- 3. If $y = ax^2 + bx + c$, $a \neq 0$, then $y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac b^2}{4a}$ A) If a is positive then minimum value of y is $\frac{4ac - b^2}{4a}$ B) If a is positive then maximum value of y is $\frac{4ac - b^2}{4a}$ C) If a is negative then minimum value of y is $\frac{4ac - b^2}{4a}$ D) If a is negative then maximum value of y is $\frac{4ac - b^2}{4a}$
- 4. In a quadrilateral ABCD, p, q are the lengths of the perpendiculars drawn from the vertices B and D onto the diagonal AC. If AC = r, then the area of the quadrilateral ABCD is A) pqr B) pqr/2 C) (p + q)r D) (p + q)r/2

5. Two circles having centers at A(x₁, y₁), B(x₂, y₂) having radii 5, 3 respectively are touching each other at a point P(x₃, y₃). Then $\left|\sum (x_1y_2 - x_2y_1)\right| =$ A) 5 B) 0 C) 3 D) 15

- 6. A factor of $\sum a^2b + \sum ab^2 + 3abc$ is (a, b, c are real numbers) A) $\sum a^2$ B) $\sum a$ C) $\sum ab$ D) $\sum ab^2$
- 7. D, E, F are the mid points of the sides BC, CA and AB of a triangle ABC.
 A) DE // AB B) EF = (1/2)BC
 C) Area of triangle DEF = (1/3)(Area of triangle ABC)
 D) Area of triangle DEF = (1/4)(Area of triangle ABC)
- 8. Statement 1: Given any two real numbers p, q there always exist two real numbers a and b such that a + b = p and ab = q.
 Statement 2: There exist two real numbers a, b such that a + b = 3 and ab = -400.
 A) Statement 1 is true
 B) Statement 1 is false
 C) Statement 2 is true
 D) Statement 2 is false
- 9. $\sqrt{x-a} + \sqrt{x-5} = 0$ then *a* is a solution of A) $x^2 - 6x + 5 = 0$ B) $x^2 - 7x + 10 = 0$ C) $x^2 - x + 1 > 0$ D) $x^2 + x + 1 > 0$
- 10. In a triangle ABC, D, E are points on the line segments AB and AC respectively. DE is parallel to BC. If (AB / AC) = 6/7 and (AD / DB) = 3/2 then AC / AE = A) 3/7 B) 3/2 C) 7/6 D) 5/3

2018

11.	The number of integral solutions of the equation $\left\lceil \frac{k}{1} \right\rceil + \left\lceil \frac{k}{2} \right\rceil + \left\lceil \frac{k}{3} \right\rceil = 100$, where [x] is the greatest			
	integer less than or equal to A) 0	o x, is B) 55	C) 1	D) 4
12.	If x > 2 then the number of values of x satisfying $\sqrt{ x-2 } = \sqrt{x-2} $ is			
	A) 0	B) less than 3000	C) 2018	D) not finite
13.	In a triangle ABC, D is a p A. The lengths of the side A) $2\sqrt{15}$	point on the side BC such s AB, BC, AC are 4, 6, 8 r B) $\sqrt{15}$	that AD is the internal angrespectively. Then the area C) $3\sqrt{15}$	gle bisector of the angle a of triangle ACD is D) 2
14.	If a, b are two real number A) $ab^{1/3} = -6$	s such that $a + 2b^{1/3} = 5$, a B) $ab^{1/3} = 6$	$a^{3} + 8b = 305$ then C) $a^{3}b = -216$	D) $2ab^{1/3} = 3$
15.	The solution set of $(3x)^{\log}$ A) { 1, 3, 5, 15 }	$^{3} = (5x)^{\log 5}$ is B) { 1, 15 }	C) { 1/15 }	D) {3, 5}
16.	In triangle ABC, right ang	led at A, AD is the altitud	le on to the side BC. If A	D = 6 and $BD = 9$ then
	CD = A) 6	B) 9	C) 4	D) 3/2
17.	$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots$	$.+a_1x + a_0 = 0$ is a poly	nomial equation. P(0) is	a root of the equation
	P(x) = 0. Then A) $P(0) = 0$	B) $P(a_0) = 0$	C) $P(P(0)) = 0$ D) a_0 is a	root of $P(x) = 0$
18.	Statement 1: A function is Statement 2: A, B are two B such that the range of f i A) Statement 1 is true	possible from a set having sets having 3 and 5 eleme s equal to B is 0. B) Statement 1 is false	g 100 elements to a set hav ents respectively. Number C) Statement 2 is true	ing 2 elements. of functions from A to D) Statement 2 is false
19.	In a triangle ABC, AD is t	he altitude onto the side B	C. If angle B is acute then	$AC^2 =$
	A) $AB^2 + BC^2 + 2BC.BD$	$B) AB^2 + BC^2 - 2BC.$	BD C) $AB^2 + BC^2 + B$	C.BD D) $AB^2 + BC^2$
20.	$x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$	= (x - 1)(x - 2)(x - 3)(x -	- 4) then	
	A) $a_3 = -10$	B) a ₂ = 35	C) $a_1 = -50$	D) $a_0 = 24$
21.	If $\sum_{r=2}^{100} \frac{1}{1+2+3++r} = \frac{x}{y}$,	where x, y are positive int	tegers, GCD of x, y is 1, the C 101	hen $x + y =$
22	A) 200	B) 99		
22.	ABCD is a cyclic quadrila AEC is 20° then A) angle ABC is 160°	B) angle ADC is 20°	C) angle ABC is 100°	D) angle ADC = 100°
23.	Given $sin(A + B) = sinAcc$	$\cos B + \cos A \sin B$, $\sin 75^0 =$		
	A) 2/ \sqrt{3}	B) $\frac{\sqrt{3}+1}{2\sqrt{2}}$	C) $\frac{\sqrt{3}+1}{\sqrt{2}}$	D) $\frac{\sqrt{3}-1}{\sqrt{2}}$
24.	Three of the vertices of a p A) (1, 1)	barallelogram are (2, –7), (B) (1, 15)	2, 0) and (1, 8) if the fourt C) (3, -15)	h vertex is D) (7, -8)
25.	In a rhombus lengths of the A) radius of C is $12/\sqrt{5}$ C) area of the square insert	e diagonals are 12 and 24. ibed in C is $12\sqrt{2/5}$	A circle C is inscribed in B) radius of C is $24/\sqrt{5}$ D) Area of square inscrib	it. Then bed in C is $6\sqrt{2/5}$

26.	ax ² + bx + c = 0 is a quadr A) Roots of the equation a C) If $\Delta \neq k^2$, k rational, the D) Roots of the equation a	atic equation, a, b, c are ra re always real on the roots are rational con re always rational	tional numbers. $\Delta = b^2 - B$) If $\Delta = k^2$, k is rational njugates	4ac. , then roots are rational
27.	Statement 1: If set A has m elements and set B has n elements then A X B has mn elements. Statement 2: If A has 5 elements and B has 6 elements then the number of one-one functions from to B is 6			
	A) Statement 1 is true	B) Statement 1 is false	C) Statement 2 is true	D) Statement2 is false
28.	Statement 1: If a chord is which this chord makes v corresponding alternate se Statement 2: If a line is d with the chord is equal to tangent to the circle.	drawn through the point of with the given tangent are gments. rawn through an end point the angle subtended by the	of contact of a tangent to e equal respectively to the at of a chord of a circle se e chord in the alternate se	a circle, then the angles be angles formed in the o that the angle formed gment, then the line is a
	A) Statement 1 is true	B) Statement 1 is false	C) Statement 2 is true	D) Statement 2 is false
29.	$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_{n-1} x^{n-1} + \dots + a_{n-1} x^{n-1} + \dots + a_n$ integer and $P(\alpha) = 0$ then A) α divides a_0	$a_1x + a_0 = 0$ is a polynom	ial equation, $a_0, a_1,, a_n$ B) $a_0 = k \alpha$, k is an integ	are integers. If α is an ger
	c) all divides a	—	D) α divides a_n	
30. Number of values of x such that $ x + \sqrt{x} + [x] = x$, where [x] denotes the greatest i equal to x, is			atest integer less than or	
	A) 1	B) 0	C) more than 3	D) not finite
31.	C ₁ and C ₂ are two circles s A) $AP = PB$ C) $AP = PB$ if C ₁ and C ₂ a	uch that C_1 lies inside C_2 . re concentric	AB is a chord of circle C B) $AP = (1/2)(AB)$ D) $AP = PB$ if C ₁ and C	$_2$ touching C ₁ at P. $_2$ touch internally
32.	Statement 1: Number of fa Statement 2: Sum of the sc A) Statement 1 is true	ctors of 2018 is 2 juares of the factors of 201 B) Statement 1 is false	8 is 1018085 C) Statement 2 is true	D) Statement 2 is false
33.	$\alpha, \beta, \gamma, \delta$ are roots of the p	olynomial equation P(x) =	$a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_3x^3 + a_2x^3 + a_3x^3 + a$	$a_0 = 0$. Then
	A) $\sum \alpha = a_3$	B) $\sum \alpha = a_3/a_4$	C) $\sum \alpha \beta = a_2/a_4$	D) $\alpha\beta\gamma\delta = a_0/a_4$
34.	ABCD is a rectangle region that A, Q lie on the oppose ABPORDA is	on. P is a point on the seguite sides of the line BC.	gment BC. PQRC is also $AD = 15$, $DR = 18$. The	a rectangle region such perimeter of the region
	A) 66	B) 33	C) 270 I	D) cannot be determined
35.	If x, y are real numbers suc	ch that $x^2 + y + 8 = 6x^{2/3}y^1$	$^{/3}$, $x^{2/3} + y^{1/3} > -2$ then	
	A) $x^{2/3} = 2$	B) y = 8	C) $y = 2\sqrt{2}$	D) $x = 2\sqrt{2}$
36.	C_1, C_2, C_3, \dots are in A.P. then	$C_1 = 8, C_2 = 10, C_3 = 12.$	If $b_1 = 6$ and b_n be determined by $b_1 = 6$ and $b_n = 6$ and $b_n = 6$ and $b_n = 6$.	rmined by $b_n = b_{n-1} + C_n$
	A) $b_4 = 42$	B) b ₇ = 96	C) $b_5 = 58$	D) $b_6 = 76$
37.	ABCD is a rectangle hav	ing area 8051. Its side	lengths are integers. Th	en minimum perimeter
	possible for such rectangle A) 8051	is B) 16104	C) 180	D) 360
38.	For the function $f(x) = \sqrt{x}$ A) domain is [1, 2]	$x^{2}-3x+2 + \sqrt{3x-x^{2}-2}$ B) domain is {1, 2}	C) range is {0}	D) Range is $[0, \infty)$
39.	If $A = (\cos x + \sin x)^2 + (\cos A) A = B$ B) $A^2 + B$	$(\sin x - \sin x)^2$, $B = 2(\cos^6 x - \sin^6 x)^2$	$+\sin^{6}x - 3(\cos^{4}x + \sin^{4}x)$ $B^{2} = 4$ D) (1 + 2A - 5	() + 1 then $A^2 + 6A^3(B^2 - 3B) = 0$
			-1 $J(1+2A=J)$	-100 - 100 - 0

A) 15 m B) 12 m C) 9 m D) 18 m

- 47. A block A of mass m moving with a constant velocity v along a smooth horizontal floor collides with another block B of mass 2m and rebounds with a velocity 2v/5, the velocity of block B after collision is
 A) v/3
 B) v/5
 C) 2v/5
 D) 3v/5
- 48. A block of mass M is displaced through 's' from rest by applying a constant force 'F'. If work done by the force equals increase in kinetic energy of the block, its velocity is

A)
$$2FS/M$$
 B) $\sqrt{2FS/M}$ C) $\sqrt{FS/M}$ D) $\sqrt{FS/2M}$

49. 'n' samples of same liquid with masses m,2m,3m,....,nm at temperatures t,2t,3t,....,nt are mixed in an isolated system. The resultant temperature of the mixture is
A) nt
B) n(n+1)t/2
C) n(n+1)(2n+1)t/6
D) (2n+1)t/3

50. 20 g of ice is dropped in to a calorimeter of water equivalent 10 g containing 90 g of water at 40°C. The resultant temperature of the mixture is (specific heat of water = 1 cal g⁻¹ °C⁻¹, Latent heat of ice = 80 cal g⁻¹) A) 0°C B) 20°C C) 10°C D) 30°C

51.	A convex lens of for as shown. A point o of 30 cm to the left object, focal length	own. A point object is located on the principal axis at a distance cm to the left of the lens. If the final image coincides with the t, focal length of the mirror must be		0 30 cm 50 cm
	A) 5 cm	B) 10 cm	C) 15 cm	D) 30 cm
52.	In the previous ques would be A) 30 cm	tion if the convex mirror is r B) 60 cm	removed, the distance of C) 90 cm	the image from the object
53.	The image produced A) diminished, virtu	l by a convex mirror of an e alB) real, magnified	xtended object is C) magnified, virtual	D) real, diminished
54.	A biconvex lens of a index of the materia A) 30 cm	focal length 20 cm has curve l of the lens is 1.5. Smaller B) 15 cm	ed surfaces whose radii a of the radii of curvatures C) 10 cm	re in the ratio 1:2. Refractive s is D) 20 cm
55.	A long horizontal st and west of the cond magnetic field at A) A is downward	raight conductor carries a cu ductor and points C,D are ve B) B is upward	arrent from north to south ertically above and below C) C is westward	h. Points A and B are to east the conductor. Direction of D) D is westward
56. I (Readings of ammeter Consider ammeter, v	in the circuit shown is oltmeter and battery as ideal	l)	R 2R
1	A) E/2R	B) E/3R		R 2R
(C) E/R	D) E/4R		E
57.]	In the previous questi A) E	ion the reading of the voltme B) E/2	eter is C) E/3	D) E/4
58.	Two resistances of 0 6 Ω and 3 Ω resistant A) 2:1	5Ω and 3Ω are connected in neces is B) 1:2	n parallel. The ratio of th C) 3:1	ne rate of heat production in the D) 1:3
59.	In the previous ques in the combination i A) 18 W	stion if the combined current B) 12 W	t in the two resistors is 3 C) 36 W	A, the rate of heat production D) 24 W
60.	An electric bulb rate A) 60 W	ed 60 W at 220 V. If the bull B) 30 W	b is used on 110 V suppl C) 15 W	y, its power would be D) 240 W
61.	A long straight verti of the conductor are A) straight lines par C) concentric circle	ical conductor is carrying so allel to the conductor s in horizontal plane	me current. Magnetic fie B) straight lines perper D) concentric circles in	eld lines in the neighbourhood ndicular to the conductor n vertical plane
62.	A charged ion of matching angles to a magnetic A) $qB/2\pi m$	ass 'm' and charge 'q' is mo c field of strength 'B'. Frequ B) $2\pi m/qB$	ving in circular path of r ency of revolution of the C) $2qB/\pi m$	adius r in a plane at right e particle is D) $\pi m/2qB$
63.	Nucleus A decays in A) A and C are isoto C) A and B are isoto	n to nucleus C in a two-step opes opes	process. $A \rightarrow B + {}^{4}_{2}He a$ B) A and C are isobars D) A and B are isobars	and $B \rightarrow C + 2e^-$. Then

64.	In a nuclear reactor 94 occurring every minute A) 1.5×10^{21}	g of uranium (U ²³⁵) und e is (Avogadro number i B) 1.5×10^{22}	lergoes fission every 10 s 6 x 10^{23} per mole) C) 1.5×10^{20}	60 minutes. Number of reactions D) 1.5×10^{19}
65.	In the previous question assuming 100% efficie A) 200 MW	n, if the energy released ncy the power output of B) 300 MW	from the fission of one the reactor is C) 400 MW	e U ²³⁵ nucleus is 200 MeV, D) 800 MW
66.	The electronic configu A) [Ne]3s ² 3p ¹	B) [Ne] $3s^23p^2$	ionization enthalpy is C) [Ne]3s ² 3p ³	D) [Ne] $3d^{10}4s^23p^3$
67.	For the following reac i) Zn A) acid and acid	tions ZnO respectively a O+Na ₂ O →Na ₂ ZnO ₂ B) acid and base	acting as a/an ii) ZnO+CO ₂ →ZnCC C) base and acid) ₃ D) base and base
68.	The following reaction Using the LeChatelier A) removal of CO	n occurs in the Blast Fur Fe ₂ O ₃ (s) + 3CO(g) 's principle, predict whi B) removal of CO ₂	mace where iron ore is $\Leftrightarrow 2Fe(1)+3CO_2(g)$ ch of the following with C) addition of CO ₂	reduced to iron metal ll disturb the equilibrium? D) addition of Fe ₂ O ₃
69.	The group(s) in which A) BF ₃ , NF ₃ , CO $_3^{2-}$	all are not having trians B) CO_3^{2-} , NO_3^- , SO_3	gular planar structures C) NH ₃ , SO ₃ , CO CO	is/are D_3^{2-} D) NCl ₃ , BCl ₃ , SO ₃
70.	Assuming ideal beha temperature and press A) 0.64	vior the ratio of densi ure is (Cl=35.5 amu) B) 1.64	ty of ammonia to the C) 1.46	at of hydrogen chloride at same D) 0.46
71.	When XO_2 is fused v KNO ₃ , a dark green p solution. X is A) Ti	with an alkali metal hy roduct is formed which B) Cr	droxide in the presendisproportionate in ac	ce of an oxidizing agent such as id solution to afford a dark purple D) Mn
72.	A group 13 element X and easily reacts with dimerization. X is A) Ga	X reacts with chlorine gath NH ₃ to form $Cl_3 Y$ B) Al	as to produce compoun $X \leftarrow NH_3$ adduct: Ho C) In	d XCl ₃ . XCl ₃ is electron deficient owever, XCl ₃ does not undergo D) B
73.	In which of the follow A) $BF_3 \rightarrow BF_4^-$	Fing conversions involve B) $H_2O \rightarrow H_3O^+$	es change in both shape C) $CH_4 \rightarrow C_2H$	e and hybridization? I ₆ D) $NH_3 \rightarrow NH_4^+$
74.	1g of a carbonate (M_2 mass of M_2CO_3 in g n A) 118.6	CO_3) an treatment with nol ⁻¹ is B) 11.86	excess HCl produces (C) 1186	D) 84.3
75.	Which of the followin A) FeCl ₃	g salts is/are the basic ir B) Pb(NO ₃) ₂	n aq.solution C) Na ₂ CO ₃	D) CH ₃ COOK
76.	Metal M is treated wi NaOH solution. X wh thermite process. The A) Fe	th NaOH, a white gelat en heated strongly gives metal M is B) Al	inous precipitate X is s an oxide, which is al C) Zn	formed. X is soluble in excess of so one of the products of alumino D) Ca
77.	The compound(s) that A) NH ₄ NO ₂	produces nitrogen gas b B) (NH ₄) ₂ SO ₄	by thermal decomposit C) (NH4) ₂ Cr ₂ O ₇	ion is/are D) NH4NO2
78.	Which of the followin KCl, PH ₃ , O ₂ , B ₂ H ₆ , A) KCl	g compounds contain(s) , H ₂ SO ₄ B) KCl; B ₂ H ₆	no covalent bond(s) C) KCl; B ₂ H ₆ ; PH ₃	D) KCl; H ₂ SO ₄

79.	In KO ₂ , the nature of o A) superoxide, and -1 C) superoxide and -1	xygen species and oxic /2	lation state of oxygen a B) peroxide and -1/2 D) oxide and -2	tom are respectively
80.	At a certain temperature equilibrium according At equilibrium of one r A) 2.5	te in a 5L vessel, 2 mo to the reaction $CO+Cl_2$ nole of CO is present t B) 3	bles of CO and 3 moles $\Rightarrow COCl_2$ hen equilibrium consta C) 4	s of Cl_2 gas were allowed to reach nt K_c for the reaction is D) 2
81.	Correct order of electro A) F>Cl>O	onic affinity is B) Cl>F>O	C) O>F>Cl	D) F>O>Cl
82.	The decreasing order o	f bond angles in BF ₃ , N	NH_3, H_2O, I_3^-	
	A) BF ₃ >NH ₃ >H ₂ O>I ⁻ ₃	B) $BF_3 > I_3^- > H_2O > N$	$H_3 C) I_3^- > BF_3 > NH_3 > H_3$	I_2O D) $I_3^->NH_3>H_2O>BF_3$
83.	3. A white sodium salt dissolves readily in water to give a solution neutral to litmus. A silver solution is added to the above solution white ppt is formed which does not dissolve in dil.nitr The anion is			neutral to litmus. A silver nitrate loes not dissolve in dil.nitric acid.
	A) SO ²⁻ ₄	B) CO $_3^2$	C) Cl	D) S^{2-}
84.	In graphite and diamo respectively	nd the percentage of	P-character of the hyl	orid orbital's in hybridization are
	A) 33 and 25	B) 67 and 75	C) 33 and 75	D) 50 and 75
85.	When a electric current cathode in 965 seconds A) 0.1	at is passed though act. The current passed in B) 2.0	idified water, 112 ml on ampheres is C) 0.5	of H ₂ gas at NTP was collated at D) 1.0
86	Which of the following	r correct for P ₄ molecul	Íar structure	,
00.	A) total no.of α -bonds C) each P-atom linked	in P_4 molecule is 6 to 4-other P-atoms	B) the bond angles in D) each P-atom carry	P_4 -molecule is 60^0 one lone pair of electron
87.	A solution containing 1 mole of NaCl and 1.5 mole of H_2SO_4 will be neutralized byA) 1.5 mole of NaOHB) 3 mole of NaOHC) 1.5 mole of Ba(OH)_2D) 5 mole of NaOH		e neutralized by	
88.	Which of the following statements is/are true about the quantum numbers n,l,m and s?A) <i>l</i> gives an idea of the shape of the orbitalB) n gives an idea of the structure of orbitalD) s gives an idea of spinning nature of electron			nbers n,l,m and s? the size of the orbital spinning nature of electron
89.	In which of the followi A) Cl ₂ O	ng molecules the octet B) BF ₃	rule is not violated? C) SF_6	D) NH ⁺ ₄
90.	Which of the following A) all C—H and C—C b	statements are not con bonds have a length of	rrect for alkanes 1.112Å and 1.54Å resp	pectively

B) all bond angles ae tetrahedral having a value of 109⁰28'
C) the C-C chain is linear and not Zig-Zag D) all alkanes exhibit isomerism